The remarkable structural properties of the Venus flower basket sponge (E. aspergillum) might seem fathoms removed from human-engineered structures. However, insights into how the organism’s latticework of holes and ridges influences the hydrodynamics of seawater in its vicinity could lead to advanced designs for buildings, bridges, marine vehicles and aircraft, and anything that must respond safely to forces imposed by the flow of air or water.

While past research has investigated the structure of the sponge, there have been few studies of the hydrodynamic fields surrounding and penetrating the organism, and whether, besides improving its mechanical properties, the skeletal motifs of E. Aspergillum underlie the optimization of the flow physics within and beyond its body cavity.

A collaboration across three continents at the frontiers of physics, biology, and engineering led by Giacomo Falcucci (from the Tor Vergata University of Rome and Harvard University), in collaboration with Sauro Succi (Italian Institute of Technology) and Maurizio Porfiri (Tandon School of Engineering, New York University) applied super computational muscle and special software to gain a deeper understanding of these interactions, creating a first-ever simulation of the deep-sea sponge and how it responds to and influences the flow of nearby water.

The work, “Extreme flow simulations reveal skeletal adaptations of deep-sea sponges” published in the journal Nature, revealed a profound connection between the sponge’s structure and function, shedding light on both the basket sponge’s ability to withstand the dynamic forces of the surrounding ocean and its ability to create a nutrient-rich vortex within the body cavity “basket.”

More information on the press release

Figure 1 - Hydrodynamic field inside and outside the skeletal structure of the Euplectella aspergillum glass sponge. The field was reconstructed using CINECA super-computers. Kinetic methodologies and advanced computational codes have allowed to accurately reconstruct the living conditions of the depth sponges, highlighting their remarkable structural and fluid dynamic properties.
Photo credit: G. Falcucci, "Tor Vergata" University of Rome

To understand how Venus flower basket sponges acts, the team made extensive use of the Marconi100 exascale-class computer at the CINECA high performance computing center in Italy, which is capable of creating comprehensive simulations using billions of dynamic, temporospatial data points in three dimensions.

The researchers also exploited special software developed by study co-author Giorgio Amati, of SCAI (Super Computing Applications and Innovation) at CINECA, Italy. The software enabled super computational simulations based on Lattice Boltzmann methods, a class of computational fluid dynamics methods for complex systems that represents fluid as a collection of particles and tracks the behavior of each of them.

The in-silico experiments, featuring approximately 100 billion virtual particles, reproduced the hydrodynamic conditions on the deep-sea floor where E. Aspergillum lives. Results processed by Vesselin K. Krastev at Tor Vergata University of Rome allowed the team to explore how the organization of holes and ridges in the sponge improves its ability to reduce the forces applied by moving seawater (a mechanical engineering question formulated by Falcucci and Succi), and how its structure affects the dynamics of flow within the sponge body cavity to optimize selective filter feeding and gamete encounter for sexual reproduction (a biological question formulated by Porfiri and a biologist expert on ecological adaptations in acquatic creatures, co-author Giovanni Polverino from the Centre for Evolutionary Biology at The University of Western Australia, Perth).

Read the full study, “Extreme flow simulations reveal skeletal adaptations of deep-sea sponges"